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A Protecting Group for the Carbon-Carbon Double Bond 

Sir: 

The use of protecting groups plays an important role in 
organic synthesis. Carbon-carbon unsaturation has mainly 
been protected by halogenation-dehalogenation and epox-

idation-deoxygenation,1'2 but these methods are limited by 
competing reactions with other functional groups. We de
scribe herein a practical and selective method of olefin pro
tection which employs the organometallic moiety CsHsFe-
(CO) 2

+ (=Fp + , below) as the blocking group. 

I \ 
CO CO 

The Fp(OIeAn)+BF4
- complexes may be prepared by sev

eral routes3 the most direct being the thermal exchange 
reaction between readily available Fp(isobutylene)+BF4

_ 

(1) and alkenes.4 The free olefins are conveniently regener
ated upon treatment of these complexes with NaI in ace
tone.5 We have now found that the coordinated functional
ity is unreactive toward many reagents which attack car
bon-carbon unsaturation thus permitting selective transfor
mations at other reactive centers in polyfunctional alkenes. 

Thus, whereas electrophilic (and radical) additions to 
norbornadiene are frequently accompanied by homoallylic 
isomerization producting nortricyclane derivatives,6 Fp(^2-
norbornadiene)+BF4

_ (2), obtained in 74% yield from the 
exchange reaction,7,8 smoothly added several electrophiles 
to the uncoordinated double bond without isomerization 
(Scheme I). Catalytic hydrogenation of 2 to the norbornene 

Scheme I 

Br 3b 
3a 

(90%) 

2 4 

5 

salt 5 (CF3CO2H solvent, 25°) was also accomplished. The 
structures assigned to the products 3a, 3b, 4, and 5 are 
based upon ir and 1H NMR spectral data and were con
firmed by unambiguous synthesis or by characterization of 
the deprotected ligand.9 It appears that the free double 
bond in 2 is somewhat deactivated toward electrophilic at
tack since methylene chloride solutions of 2 failed to react 
with HCl, HBr, or w-chloroperbenzoic acid at 25° over a 
few hours. 

We have also investigated use of the protecting group 
with some unsymmetrical polyenes and ene-ynes. The Fp+ 

moiety has been found to selectively coordinate to less sub
stituted and/or strained double bonds in several dienes" 
providing a method of protecting these sites which are more 
reactive toward certain reagents. For example, Fp(4-vinyl-
cyclohexene)+BF4- (6) took up 1 equiv of H 2 (10% Pd/C, 
CF3C0 2H solvent) to afford Fp(r)2-vinylcyclohex-
ane)+BF4~ (7, 75%). The ewcfo-dicyclopentadiene and 1-
octene-4-yne complexes (8 and 10) were likewise reduced in 
good yield to 9 and 11, respectively. It should be noted here 
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,Fp + 

Pd/C 

.Fp1+ 

that the present protection method complements the more 
traditional halogenation-dehalogenation procedure since in 
the latter the protecting group is introduced preferentially 
at the more substituted double bonds. 

Electrophilic addition to the carbon-carbon double bond 
of olefinic arenes is generally faster than electrophilic aro
matic substitution. The latter process may, however, be ef
fected if the substrate is first coordinated to the Fp+ moi
ety.12 For example, whereas bromination of eugenol (Br2-
CH2CI2, 0°) proceeds faster on the olefinic side chain (fol
lowed by NMR) , aromatic bromination was achieved selec
tively in good overall yield as shown below. The structure of 

OCH3 OCH, 
DTn O Ho Cl 2 

(91?.) 

NaI 

13 14 

14 readily follows from its 1H N M R spectrum: (CDCl3) 5 
7.2 (bs, 1 H, aromatic), 6.75 (bs, 1 H, aromatic), 5.9 (m, 1 
H, olefinic), 5.65 (s, 1 H, OH), 5.2-5.0 (m, 2 H, olefinic), 
3.9 (s, 3 H, OCH3) , and 3.4 (d, 2H, allylic).13 

We are currently exploring use of the CsHsFe(COh + 

protecting group in the reactions of heterofunctional olefins. 
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Base Catalyzed Rearrangement of Bispropargyl 
Sulfides, Ethers, and Amines. The Synthesis of 
Novel Heterocyclic Systems1 

Sir: 

Over the last 2 decades there has been a renewal of inter
est in the rearrangement of molecules containing acetylene 
groups. Both base catalyzed2 and thermal3 rearrangements 
of such systems have been studied and a variety of novel 
monocyclic,3 polycyclic,2'3 and macrocyclic compounds213 

have been prepared. A smaller number of studies have been 

Scheme I 

X ° — 

la, X = S; R = C6H5 

b, X = 0; R = C6H5 

c, X= NCH3; R = C6H 
d, X = O; R= H 

/ = • = — C 6 H 5 

H* R 

3a, X = S; R = C6H5 

b, X = O; R = C6H5 

c, X= NCH3; R = C6H5 

d\ X = O; R= H 
2a, X = S; R = C6H5 

b, X = O; R=C6H5 

c, X = NCH31R = C6H5 

d, X = O; R = H 
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